

EA MLA Signatory Český institut pro akreditaci, o.p.s. (Czech Accreditation Institute) Hájkova 2747/22, Žižkov, 130 00 Praha 3

issues

according to section 16 of Act No. 22/1997 Coll., on technical requirements for products and on changes and amendments to some Acts, as amended

CERTIFICATE OF ACCREDITATION

No. 368/2025

ČEZ, a. s. with registered office Duhová 2/1444, 140 53 Praha 4 Company Registration No. 45274649

for the Calibration Laboratory No. **2245**Calibration Laboratory – Metrology

Scope of accreditation:

Calibration in the fields of length, plane angle, mass, torque, pressure, temperature, humidity, electrical quantities, time and frequency quantities and mechanical motion to the extent as specified in the appendix to this Certificate.

This Certificate of Accreditation is a proof of accreditation issued on the basis of assessment of fulfillment of the accreditation criteria in accordance with

ČSN EN ISO/IEC 17025:2018

In its activities performed within the scope and for the period of validity of this Certificate, the abovementioned Accredited Body is entitled to refer to this Certificate, provided that the accreditation is not suspended and the Accredited Body meets the specified accreditation requirements in accordance with the relevant regulations applicable to the activity of an accredited conformity assessment body.

This Certificate of Accreditation replaces, to the full extent, Certificate No.: 19/2024 of 18/01/2024, and/or any administrative acts building upon it.

The Certificate of Accreditation is valid until: 18/01/2029

Prague: 17/07/2025

Signed in the Czech original: Zdeňka Drdová on 17/07/2025

Jan Velíšek

Director of the Department of Testing and Calibration Laboratories Czech Accreditation Institute

This translation of the Czech original has been issued by: Andrea Muzikářová

Accredited entity according to ČSN EN ISO/IEC 17025:2018:

ČEZ, a. s.

CAB number 2245, Calibration Laboratory – Metrology JE Temelín, 373 05 Temelín

Calibration laboratory locations:

1. **Nuclear Power Plant Dukovany** Modřínová 1094, 674 01 Třebíč

2. **Nuclear Power Plant Temelín** 373 05 Temelín

CMC for the field of measured quantity: Length

Ord.	Calibrated quantity / Subject of	Nom	ninal ra	nge	Parameter(s) of the	Lowest stated expanded		Calibration	
number ¹	calibration	min unit		max unit	measurand	measurement uncertainty ²	Calibration principle	procedure identification ³	Location
1	Micrometer gauges, micrometers for						Measurement using parallel	J 62.03.G01	1, 2
	external measurement	0 mm	to	100 mm		0.0012 mm	gauge blocks		
		100 mm	to	500 mm		0.0013 mm			
		500 mm	to	700 mm		0.0014 mm			
		700 mm	to	900 mm		0.0015 mm			
		900 mm	to	1,000 mm		0.0016 mm			
	Micrometers for internal						Measurement by setting rings		
	measurement	5 mm	to	45 mm		0.0019 mm			
	Three-contact internal gauges	6 mm	to	200 mm		0.0019 mm			
2	Slide gauges			• • • • •		0.012	Measurement using parallel	J 62.03.G02	1, 2
		0 mm	to	2,000 mm		0.012 mm	gauge blocks		
3	Indicators / dial, digital, lever	0		-	division 0.001 mm	0.00022	Measurement on a dial indicator	J 62.03.G03	1, 2
		0 mm	to	5 mm		0.00033 mm	calibration instrument		
		5 mm	to	13 mm		0.00034 mm			
		0 mm	to	50 mm	division 0.01 mm	0.0012 mm			
		50 mm	to	100 mm		0.0013 mm			
4	Weld gauges / linear scales	0 mm	to	50 mm		0.026 mm	Measuring with a slide gauge	J 62.03.G04	1, 2
			to			0.23 mm	Measurement using parallel		
		50 mm		60 mm			gauge blocks		

Asterisk at the ordinal number identifies the calibrations, which the Laboratory is qualified to carry out outside the permanent laboratory premises.

The expanded measurement uncertainty is in accordance with ILAC-P14 and EA-4/02 M a part of CMC and it is the lowest value of the respective uncertainty. If not stated otherwise, its coverage probability is approx. 95 %. If not stated otherwise, the uncertainty values stated without a unit are relative to the measured value. The uncertainty value stated herein is based on the best conditions achievable by the laboratory; the uncertainty value of a specific calibration may be higher depending on the conditions of such a calibration. For identical extreme values of adjacent ranges, the lower uncertainty value always applies.

Accredited entity according to ČSN EN ISO/IEC 17025:2018:

ČEZ, a. s.

CAB number 2245, Calibration Laboratory – Metrology JE Temelín, 373 05 Temelín

CMC for the field of measured quantity: Plane angle

Ord.	Calibrated quantity /		Nom	ninal ra	nge		Parameter	(s) of the	Lowest stated expanded		Calibration	
number ¹	Subject of calibration	min	unit		max	unit	measui	` ′ _	measurement uncertainty ²	Calibration principle	procedure identification ³	Location
1	Weld gauges / angular scales	0°		to	90°				0.1°	Measuring with an angle gauge	J 62.03.G04	1, 2
		90°		to	150°				1.2°	Measurement using angle gauges		

- Asterisk at the ordinal number identifies the calibrations, which the Laboratory is qualified to carry out outside the permanent laboratory premises.
- The expanded measurement uncertainty is in accordance with ILAC-P14 and EA-4/02 M a part of CMC and it is the lowest value of the respective uncertainty. If not stated otherwise, its coverage probability is approx. 95 %. If not stated otherwise, the uncertainty values stated without a unit are relative to the measured value. The uncertainty value stated herein is based on the best conditions achievable by the laboratory; the uncertainty value of a specific calibration may be higher depending on the conditions of such a calibration. For identical extreme values of adjacent ranges, the lower uncertainty value always applies.
- If the document identifying the calibration procedure is dated only these specific procedures are used. If the document identifying the calibration procedure is not dated, the latest edition of the specified procedure is used (including any changes).

³ If the document identifying the calibration procedure is dated only these specific procedures are used. If the document identifying the calibration procedure is not dated, the latest edition of the specified procedure is used (including any changes).

Accredited entity according to ČSN EN ISO/IEC 17025:2018:

ČEZ, a. s.

CAB number 2245, Calibration Laboratory – Metrology JE Temelín, 373 05 Temelín

CMC for the field of measured quantity: Mass

Ord.	Calibrated quantity /		Non	inal	range		Parameter(s) of the	Lowest stated expanded measurement uncertainty ²	Calibration principle	Calibration procedure	Location
number ¹	Subject of calibration	min	unit		max	unit	measurand	Lowest stated expanded measurement uncertainty-	Cambration principle	identification ³	Location
1*	Scales with non- automatic function, electronic	1 r	ng	to	19	kg		According to the weights used for calibration, U _i can have the following values	Load with standard weights (according to OIML R 111-1:2004) class E2	J 62.06.W01	1,2
			Ü			Č		$U_1(1 \text{ mg}) = 2.7 \cdot 10^{-3} \text{ mg}$			
								$U_2(2 \text{ mg}) = 2.7 \cdot 10^{-3} \text{ mg}$			
								$U_3 (5 \text{ mg}) = 2.7 \cdot 10^{-3} \text{ mg}$			
								$U_4(10 \text{ mg}) = 3.6 \cdot 10^{-3} \text{ mg}$			
								$U_5(20 \text{ mg}) = 4.5 \cdot 10^{-3} \text{ mg}$			
								$U_6(50 \text{ mg}) = 5.3 \cdot 10^{-3} \text{ mg}$			
								$U_7(100 \text{ mg}) = 7.1 \cdot 10^{-3} \text{ mg}$			
								$U_8 (200 \text{ mg}) = 8.9 \cdot 10^{-3} \text{ mg}$			
								$U_9(500 \text{ mg}) = 1.2 \cdot 10^{-2} \text{ mg}$			
								$U_{10}(1 g) = 1.4 \cdot 10^{-2} mg$			
								$U_{11}(2 g) = 1.8 \cdot 10^{-2} mg$			
								$U_{12}(5 g) = 2.3 \cdot 10^{-2} mg$			
								$U_{13}(10 g) = 2.7 \cdot 10^{-2} mg$			
								$U_{14}(20 g) = 3.6 \cdot 10^{-2} mg$			
								$U_{15}(50 \text{ g}) = 4.5 \cdot 10^{-2} \text{ mg}$			
								$U_{16}(100 \text{ g}) = 7.1 \cdot 10^{-2} \text{ mg}$			
								$U_{17}(200 \text{ g}) = 1.4 \cdot 10^{-1} \text{ mg}$			
								$U_{18}(500 \text{ g}) = 3.6 \cdot 10^{-1} \text{ mg}$			
								$U_{19}(1 \text{ kg}) = 7.1 \cdot 10^{-1} \text{ mg}$			
								$U_{20}(2 \text{ kg}) = 1.3 \cdot 10^0 \text{ mg}$			
								$U_{21}(5 \text{ kg}) = 3.5 \cdot 10^0 \text{ mg}$			
								$U_{22}(10 \text{ kg}) = 7.1 \cdot 10^0 \text{ mg}$			

ČEZ, a. s.CAB number 2245, Calibration Laboratory – Metrology JE Temelín, 373 05 Temelín

Ord.	Calibrated quantity / Subject of calibration		ninal range	Parameter(s) of the	Lowest stated expanded measurement uncertainty ²	Calibration principle	Calibration procedure	Location
	, and the second	min unit	t max unit	measurand			identification ³	
2	F1, F2, M class weight					Comparison with a	J 62.03.W02	1
						standard weight		
						(according to OIML R 111-1:2004) of class		
		1 mg	to 5 mg		$4.6 \cdot 10^{-3} \text{ mg}$	E2 on reference scales		
			10 mg		$4.9 \cdot 10^{-3} \text{ mg}$			
			20 mg		$5.3 \cdot 10^{-3} \text{ mg}$			
			50 mg		$5.8 \cdot 10^{-3} \text{ mg}$			
			100 mg		$6.8 \cdot 10^{-3} \text{ mg}$			
			200 mg		$8.0 \cdot 10^{-3} \text{ mg}$			
			500 mg		$1.0 \cdot 10^{-2} \text{ mg}$			
			1 g		$1.1 \cdot 10^{-2} \text{ mg}$			
			2 g		$1.4 \cdot 10^{-2} \text{ mg}$			
			5 g		$1.8 \cdot 10^{-2} \text{ mg}$			
			10 g		$2.1 \cdot 10^{-2} \text{ mg}$			
			20 g		$2.7 \cdot 10^{-2} \text{ mg}$			
			50 g		$3.4 \cdot 10^{-2} \text{ mg}$			
			100 g		$5.5 \cdot 10^{-2} \mathrm{mg}$			
			200 g		$1.1 \cdot 10^{-1} \text{ mg}$			
			500 g		$8.2 \cdot 10^0 \mathrm{\ mg}$			
			1 kg		$8.2 \cdot 10^0 \mathrm{mg}$			
			2 kg		$8.3 \cdot 10^{0} \text{ mg}$			
			5 kg		$8.6\cdot10^{0}\mathrm{mg}$			
			10 kg		$8.2\cdot10^{1}$ mg			

Asterisk at the ordinal number identifies the calibrations, which the Laboratory is qualified to carry out outside the permanent laboratory premises.

The expanded measurement uncertainty is in accordance with ILAC-P14 and EA-4/02 M a part of CMC and it is the lowest value of the respective uncertainty. If not stated otherwise, its coverage probability is approx. 95 %. If not stated otherwise, the uncertainty values stated without a unit are relative to the measured value. The uncertainty value stated herein is based on the best conditions achievable by the laboratory; the uncertainty value of a specific calibration may be higher depending on the conditions of such a calibration. For identical extreme values of adjacent ranges, the lower uncertainty value always applies.

If the document identifying the calibration procedure is dated only these specific procedures are used. If the document identifying the calibration procedure is not dated, the latest edition of the specified procedure is used (including any changes).

Accredited entity according to ČSN EN ISO/IEC 17025:2018:

ČEZ, a. s.

CAB number 2245, Calibration Laboratory – Metrology JE Temelín, 373 05 Temelín

CMC for the field of measured quantity: Mechanical motion

Ord.			No	mina	l range		Parameter(s) of the	Lowest stated expanded		Calibration procedure	
number ¹	Calibrated quantity / Subject of calibration	min	unit		max	unit	measurand	measurement uncertainty ²	Calibration principle	identification 3	Location
1	Effective value of linear harmonic mechanical vibrations / Vibrometers, vibration sensors						30 Hz to 1 000 Hz	2.7 %	Comparison with a reference standard	J 62.09.V01	2
	acceleration	3 m·	$\cdot s^{-2}$	to	60 n	$n \cdot s^{-2}$					
	velocity	0,5 m·	$\cdot s^{-1}$	to	320 n	$\mathbf{n} \cdot \mathbf{s}^{-1}$					
	amplitude	0 μn	n	to	4800 μ	ım					
2	Sensitivity of vibration sensors	0,01 m	V/m·s ⁻²	to	10 000 n	nV/m·s ⁻²	30 Hz to 1 000 Hz	2.7 %	Comparison with a reference standard	J 62.09.V01	2

Asterisk at the ordinal number identifies the calibrations, which the Laboratory is qualified to carry out outside the permanent laboratory premises.

The expanded measurement uncertainty is in accordance with ILAC-P14 and EA-4/02 M a part of CMC and it is the lowest value of the respective uncertainty. If not stated otherwise, its coverage probability is approx. 95 %. If not stated otherwise, the uncertainty values stated without a unit are relative to the measured value. The uncertainty value stated herein is based on the best conditions achievable by the laboratory; the uncertainty value of a specific calibration may be higher depending on the conditions of such a calibration. For identical extreme values of adjacent ranges, the lower uncertainty value always applies.

If the document identifying the calibration procedure is dated only these specific procedures are used. If the document identifying the calibration procedure is not dated, the latest edition of the specified procedure is used (including any changes).

Accredited entity according to ČSN EN ISO/IEC 17025:2018:

ČEZ, a. s.

CAB number 2245, Calibration Laboratory – Metrology JE Temelín, 373 05 Temelín

CMC for the field of measured quantity: Torque

Ord.	Calibrated quantity /		Nomi	inal range		Parameter(s) of the	Lowest stated expanded		Calibration	
number ¹	Subject of calibration	min	unit	max	unit	measurand	measurement uncertainty ²	Calibration principle	procedure identification ³	Location
II .	Torque / Torque wrenches, torque screwdrivers	1 N·	·m	to 10	00 N·m		0.7 %	Calibration with a reference torque device	J 62.03.S01	1, 2

Asterisk at the ordinal number identifies the calibrations, which the Laboratory is qualified to carry out outside the permanent laboratory premises.

The expanded measurement uncertainty is in accordance with ILAC-P14 and EA-4/02 M a part of CMC and it is the lowest value of the respective uncertainty. If not stated otherwise, its coverage probability is approx. 95 %. If not stated otherwise, the uncertainty values stated without a unit are relative to the measured value. The uncertainty value stated herein is based on the best conditions achievable by the laboratory; the uncertainty value of a specific calibration may be higher depending on the conditions of such a calibration. For identical extreme values of adjacent ranges, the lower uncertainty value always applies.

³ If the document identifying the calibration procedure is dated only these specific procedures are used. If the document identifying the calibration procedure is not dated, the latest edition of the specified procedure is used (including any changes).

Accredited entity according to ČSN EN ISO/IEC 17025:2018:

ČEZ, a. s.

CAB number 2245, Calibration Laboratory – Metrology JE Temelín, 373 05 Temelín

CMC for the field of measured quantity: Pressure

Ord.	Calibrated quantity / Subject of	Nomi	inal range		Lowest stated		Calibration	
number ¹	calibration	min unit	max unit	Parameter(s) of the measurand	expanded measurement uncertainty ²	Calibration principle	procedure identification ³	Location
1*	Deformation and digital manometers, pressure transducers including					Comparison with a reference digital manometer	J62.03.P01, J62.03.P02, J62.03.P03	1, 2
	differential, pressure measuring chains	0 kPa	to 63 kPa	gas absolute pressure	7.4 Pa			
	incurring channe	63 kPa	to 7 MPa	gue meserane pressure	0.007 %			
		-100 kPa	to -72 kPa	positive gauge pressure	0.01 %	-		
		−72 kPa	to 0 kPa		8.5 Pa			
		0 Pa	to 500 Pa		0.2 Pa	Comparison with a standard piston pressure gauge	1	
		0,5 kPa	to 16 kPa		0.027 %			
		16 kPa	to 72 kPa		8.5 Pa	Comparison with a reference digital manometer		
		72 kPa	to 7 MPa		0.007 %			
		7 MPa	to 20 MPa		0.005 %	Comparison with a standard piston pressure gauge	1	
		0 kPa	to 500 kPa	pressure difference at stat. pressure (0.1 to 20.1) MPa	0.014 %			
		70 kPa	to 110 kPa	barometric pressure	0.011 %	Comparison with a reference digital manometer		
				oil gauge pressure, absolute		Comparison with a standard		
		0 kPa	to 350 kPa	pressure	0.042 kPa	piston pressure gauge		
		350 kPa	to 3 MPa		0.009 %			
		3 MPa	to 10 MPa		0.46 kPa			
		10 MPa	to 100 MPa		0.005 %			

Asterisk at the ordinal number identifies the calibrations, which the Laboratory is qualified to carry out outside the permanent laboratory premises.

Accredited entity according to ČSN EN ISO/IEC 17025:2018:

ČEZ, a. s.

CAB number 2245, Calibration Laboratory – Metrology JE Temelín, 373 05 Temelín

- The expanded measurement uncertainty is in accordance with ILAC-P14 and EA-4/02 M a part of CMC and it is the lowest value of the respective uncertainty. If not stated otherwise, its coverage probability is approx. 95 %. If not stated otherwise, the uncertainty values stated without a unit are relative to the measured value. The uncertainty value stated herein is based on the best conditions achievable by the laboratory; the uncertainty value of a specific calibration may be higher depending on the conditions of such a calibration. For identical extreme values of adjacent ranges, the lower uncertainty value always applies.
- ³ If the document identifying the calibration procedure is dated only these specific procedures are used. If the document identifying the calibration procedure is not dated, the latest edition of the specified procedure is used (including any changes).

Accredited entity according to ČSN EN ISO/IEC 17025:2018:

ČEZ, a. s.

CAB number 2245, Calibration Laboratory – Metrology JE Temelín, 373 05 Temelín

CMC for the field of measured quantity: Temperature

Ord.	Calibrated arrestitus/Subject of		Nom	inal	range		Danamatan(a) af tha	I amount otated amounted		Calibration	
number ¹	Calibrated quantity / Subject of calibration	min	unit		max	unit	Parameter(s) of the measurand	Lowest stated expanded measurement uncertainty ²	Calibration principle	procedure identification 3	Location
1	Platinum resistance thermometers				0,01 °	°C		0.004 °C	Direct measurement at triple point of water	J 62.03.T04	1
		-40 °	P.C	to	0 (P.C		0.010 °C	Comparison with a reference resistance thermometer in a liquid bath.		
		$\begin{bmatrix} -40 \\ 0 \end{bmatrix}$		to to	232 °			$(1.3 \cdot 10^{-5} \cdot t + 0.008) ^{\circ}\text{C}$	bath.		
		232		to	420 °			$(4.8 \cdot 10^{-5} \cdot (t - 232) + 0.011) ^{\circ}\text{C}$			
2*	Resistance temperature sensors	232		10	0,01			0.01 °C	Direct measurement at triple point of water	J 62.03.T01	1, 2
		-40 °	°C	to	0 (0.02 °C	Comparison with a reference resistance thermometer in a liquid bath.		
		0 0		to	232 9			$(5.10^{-5} \cdot t + 0.02) ^{\circ}\text{C}$	oatii.		
		232		to	400			$(5 \cdot 10^{-5} \cdot (t - 232) + 0.032) ^{\circ}\text{C}$			
		400		to	550 9			$(2 \cdot 10^{-4} \cdot (t - 400) + 0.06)$ °C			
3	Glass thermometers	40.6	20						Comparison with a reference resistance thermometer in a liquid	J 62.03.T03	1, 2
		-40 °	C	to	100 °	C		0.03 °C	bath	I (2.02 T02	1.2
4	Thermocouple temperature sensors								Comparison with a reference resistance thermometer in a liquid	J 62.03.T02	1, 2
	Sensors	-40 °	°C	to	0 9	°C		0.5 °C	bath.		
		0 9	$^{\circ}$ C	to	400	°C		$(2.5 \cdot 10^{-4} \cdot t + 0.4)$ °C			
		400 °	°C	to	550 °	°C		$(2 \cdot 10^{-3} \cdot (t - 400) + 0.5)$ °C			
5	Temperature sensors with transducer								Comparison with a reference resistance thermometer in a liquid	J 62.03.T06	1, 2
		-40 °		to	0 9			0.03 °C	bath.		
		0 9		to	400 9			$(1 \cdot 10^{-4} \cdot t + 0.03)$ °C			
		400	°C	to	550 °	°C		$(4 \cdot 10^{-4} \cdot (t - 400) + 0.07)$ °C			

ČEZ, a. s.CAB number 2245, Calibration Laboratory – Metrology
JE Temelín, 373 05 Temelín

Ord.	Calibrated quantity / Subject of		Nomin	al range		Parameter(s) of the	Lowest stated expanded		Calibration procedure	
number ¹	calibration	min	unit	max	unit	measurand	measurement uncertainty ²	Calibration principle	identification 3	Location
6*	Direct-indicating thermometers			0,01	°C		0.004 °C	Direct measurement at triple point of water	J 62.03.T05	1, 2
		40.0	00 4	0	.00		0.02.00	Comparison with a reference resistance thermometer in a liquid		
		-40 °	-	o 0 o 400	°C °C		0.02 °C (1·10 ⁻⁴ ·t + 0.02) °C	bath.		
		400	°C t	o 550	°C		$(2\cdot10^{-4}\cdot(t-400)+0.06)$ °C			
7*	Temperature measuring chains, including thermal sensors							Comparison with a reference electronic thermometer in a vertical	J 62.03.T05	1, 2
		-30°	°C t	o 0	°C		0.1 °C	furnace		
		0 '	°C t	o 400	°C		$(2.5 \cdot 10^{-4} \cdot t + 0.1)$ °C			
		400	°C t	o 660	°C		$1.5 \cdot 10^{-3} \cdot (t - 400) + 0.2)$ °C			

Asterisk at the ordinal number identifies the calibrations, which the Laboratory is qualified to carry out outside the permanent laboratory premises.

The expanded measurement uncertainty is in accordance with ILAC-P14 and EA-4/02 M a part of CMC and it is the lowest value of the respective uncertainty. If not stated otherwise, its coverage probability is approx. 95 %. If not stated otherwise, the uncertainty values stated without a unit are relative to the measured value. The uncertainty value stated herein is based on the best conditions achievable by the laboratory; the uncertainty value of a specific calibration may be higher depending on the conditions of such a calibration. For identical extreme values of adjacent ranges, the lower uncertainty value always applies.

³ If the document identifying the calibration procedure is dated only these specific procedures are used. If the document identifying the calibration procedure is not dated, the latest edition of the specified procedure is used (including any changes).

Accredited entity according to ČSN EN ISO/IEC 17025:2018:

ČEZ, a. s.

CAB number 2245, Calibration Laboratory – Metrology JE Temelín, 373 05 Temelín

CMC for the field of measured quantity: Air humidity

Ord.		No	minal 1	ange	- Parameter(s) of	Lowest stated expanded		Calibration	
number ¹	Calibrated quantity / Subject of calibration	min uni	t	max unit	the measurand	measurement uncertainty ²	Calibration principle	procedure identification ³	Location
1	Analogue and digital hygrometers, humidity transducers and humidity measuring chains, including humidity probes	10 % RI	I to	70 % RH	(15 to 35) °C	2.0 % RH	Comparison with a reference humidity transducer in a climatic chamber	J 62.03.M01	1
		70 % RI	I to	90 % RH		2.3 % RH			

Asterisk at the ordinal number identifies the calibrations, which the Laboratory is qualified to carry out outside the permanent laboratory premises.

The expanded measurement uncertainty is in accordance with ILAC-P14 and EA-4/02 M a part of CMC and it is the lowest value of the respective uncertainty. If not stated otherwise, its coverage probability is approx. 95 %. If not stated otherwise, the uncertainty values stated without a unit are relative to the measured value. The uncertainty value stated herein is based on the best conditions achievable by the laboratory; the uncertainty value of a specific calibration may be higher depending on the conditions of such a calibration. For identical extreme values of adjacent ranges, the lower uncertainty value always applies.

³ If the document identifying the calibration procedure is dated only these specific procedures are used. If the document identifying the calibration procedure is not dated, the latest edition of the specified procedure is used (including any changes).

Accredited entity according to ČSN EN ISO/IEC 17025:2018:

ČEZ, a. s.

CAB number 2245, Calibration Laboratory – Metrology JE Temelín, 373 05 Temelín

CMC for the field of measured quantity: Electrical quantities

Ord.	Calibrated quantity / Subject of	I	Nominal	range		Parameter(s) of the measurand	Lowest stated expanded measurement	Calibration principle	Calibration procedure	Location
number ¹	calibration	min un	it	max	unit		uncertainty ²		identification ³	
1	DC voltage / DC voltage							Direct generation with a	J 62.03.E01.0,	1, 2
	meters and generators	0. 1	,	220	* *		11 11/11 . 0 4 11	calibrator	J 62.03.E08.0,	
			/ to	220 m			$11 \mu\text{V/V} + 0.4 \mu\text{V}$		J 62.03.E15.0	
		220 mV		2.2 V			6.4 μV/V			
		2.2 V	to	11 V			4.9 μV/V			
		11 V	to	22 V			$4.7 \mu V/V$			
		22 V	to	220 V			6.4 μV/V			
		220 V	to	1100 V	1		8.5 μV/V			
								Direct measurement		
		0 mV		100 m			$9 \mu V/V + 0.3 \mu V$	using a multimeter		
		100 mV	/ to	1 V			6.2 μV/V			
		1 V	to	10 V	1		5.4 μV/V			
		10 V	to	1000 V	1		8.2 μV/V			
2	DC current / DC current							Direct generation with a	J 62.03.E03.0,	1, 2
	meters and generators			•••				calibrator	J 62.03.E10.0,	
		-	to	220 μ			$80 \mu\text{A/A} + 6 \text{nA}$		J 62.03.E15.0	
		220 μΑ		2.2 m			46 μA/A			
		2.2 m/		22 m			44 μA/A			
		22 m/		220 m			57 μA/A			
		220 mA	A to	2.2 A			0.01 %			
		2.2 A	to	20 A			0.048 %			
		20 A	to	120 A	1		0.035 %			
								Calibrator generation		
								with current simulation		
		120 A	to	1000 A	Λ		0.65 %	using a current coil		
				4.6				Direct measurement		
		0 μΑ		10 μ			0.018 % + 1.2 nA	using a multimeter		
		10 μΑ		100 μ			63 μA/A			
		100 μΑ	to	1 m	nA		39 μA/A			

ČEZ, a. s.CAB number 2245, Calibration Laboratory – Metrology
JE Temelín, 373 05 Temelín

Ord.	Calibrated quantity / Subject of	Noi	minal	range	Parameter(s) of the measurand	Lowest stated expanded measurement	Calibration principle	Calibration procedure	Location
number ¹	calibration	min unit		max unit	Tarameter (3) of the measurant	uncertainty ²	Canbration principle	identification ³	Location
		1 mA	to	10 mA		38 μA/A			
		10 mA	to	100 mA		54 μA/A			
		100 mA	to	1 A		0.015 %			
							Measurement with a multimeter on a current		
		1 A	to	20 A		0.024 %	shunt		
		20 A	to	100 A		0.058 %			
3	DC resistance / DC resistance meters and generators						Direct generation by calibrator/reference resistors/resistance	J 62.03.E05.0, J 62.03.E12.0, J 62.03.E13.0,	1, 2
				0Ω		50 μΩ	boxes	J 62.03.E15.0	
		$0.01~\Omega$	to	0.1 Ω		1 %			
		$0.1~\Omega$	to	1 Ω		0.2 %			
		1 Ω	to	10 Ω		0.05 %			
		10Ω	to	$100~\mathrm{k}\Omega$		0.01 %			
		$100~\mathrm{k}\Omega$	to	1 MΩ		0.02 %			
		$1~\mathrm{M}\Omega$	to	$10~\mathrm{M}\Omega$		0.05 %			
		$10~\mathrm{M}\Omega$	to	$100~\mathrm{M}\Omega$		0.1 %			
		$100~\mathrm{M}\Omega$	to	$100~\mathrm{G}\Omega$		1 %			
		$100~\mathrm{G}\Omega$	to	$1000~\mathrm{G}\Omega$		4 %			
				$1~\mathrm{m}\Omega$		0.01 %			
				$10~\mathrm{m}\Omega$		0.01 %			
				$100~\mathrm{m}\Omega$		0.01 %			
				1 Ω		0.01 %			
				1.9 Ω		0.011 %			
				10 Ω		$27~\mu\Omega/\Omega$			
				19 Ω		$27~\mu\Omega/\Omega$			
				100Ω		12 μ Ω / Ω			
				190 Ω		12 μ Ω/Ω			

ČEZ, a. s.CAB number 2245, Calibration Laboratory – Metrology
JE Temelín, 373 05 Temelín

Ord.	Calibrated quantity / Subject of calibration	No	minal rang	e	Parameter(s) of the measurand	Lowest stated expanded measurement	Calibration principle	Calibration procedure identification ³	Location
number ¹		min unit	ma	x unit	Tarameter (s) of the measurant	uncertainty ²	Canoración principio		
				1 kΩ		8 μΩ/Ω			
				1.9 kΩ		8 μΩ/Ω			
				$10~\mathrm{k}\Omega$		8 μΩ/Ω			
				$19 \text{ k}\Omega$		8 μΩ/Ω			
				00 kΩ		$10~\mu\Omega/\Omega$			
				90 kΩ		$12~\mu\Omega/\Omega$			
				$1~\mathrm{M}\Omega$		15 μ Ω / Ω			
				1.9 MΩ		21 μΩ/Ω			
				$10~\mathrm{M}\Omega$		$46~\mu\Omega/\Omega$			
				$19~\mathrm{M}\Omega$		$55~\mu\Omega/\Omega$			
				$00~\mathrm{M}\Omega$		0.012 %			
				$10~\mathrm{G}\Omega$		0.2 %			
							Direct measurement		
		$0.01~\Omega$	to	10 Ω		$27 \ \mu\Omega/\Omega$	using a multimeter		
		10Ω	to	Ω 00		$22~\mu\Omega/\Omega$			
		100Ω	to	$10 \text{ k}\Omega$		14 μ Ω / Ω			
		$10 \text{ k}\Omega$		00 kΩ		15 μ Ω / Ω			
		$100 \text{ k}\Omega$	to	$1 \text{ M}\Omega$		$26~\mu\Omega/\Omega$			
		1 MΩ		$10~\mathrm{M}\Omega$		$77~\mu\Omega/\Omega$			
		$10~\mathrm{M}\Omega$		$00~\mathrm{M}\Omega$		0.064 %			
		100 MΩ	to	1 GΩ		0.58 %			
4	AC voltage / AC voltage						Direct generation with a	J 62.03.E02.0,	1, 2
	meters and generators	1 mV	to	22 mV	40 Hz to 20 kHz	0.41 %	calibrator	J 62.03.E09.0, J 62.03.E15.0	
		22 mV		22 mV 220 mV	40 Hz to 20 kHz	0.038 %		3 02.03.L13.0	
		220 mV		2.2 V	40 Hz to 20 kHz	0.015 %			
		2.2 V	to	11 V	40 Hz to 20 kHz	59 μV/V			
		11 V	to	22 V	40 Hz to 20 kHz	57 μV/V			
		22 V		220 V	40 Hz to 20 kHz	65 μV/V			

ČEZ, a. s.CAB number 2245, Calibration Laboratory – Metrology
JE Temelín, 373 05 Temelín

Ord.	Calibrated quantity / Subject of calibration	No	minal	range	Parameter(s) of the measurand	Lowest stated expanded measurement	Calibration principle	Calibration procedure	Location
number ¹		min unit		max unit	Tarameter (5) of the measurant	uncertainty ²	Canoración principio	identification ³	
		220 V	to	1100 V	50 Hz to 1 kHz	97 μV/V			
							Direct measurement		
		1 mV	to	10 mV	40 Hz to 20 kHz	0.14 %	using a multimeter		
		10 mV	to	10 V	40 Hz to 20 kHz	0.034 %			
		10 V	to	100 V	40 Hz to 20 kHz	0.040 %			
		100 V	to	1000 V	40 Hz to 20 kHz	0.080 %			
5	AC current / AC current meters and generators						Direct generation with a calibrator	J 62.03.E04.0 J 62.03.E11.0	1, 2
		10 μΑ	to	220 μΑ	40 Hz to 1 kHz	0.026 %		J 62.03.E15.0	
		220 μΑ	to	22 mA	40 Hz to 1 kHz	0.017 %			
		22 mA	to	220 mA	40 Hz to 1 kHz	0.016 %			
		220 mA	to	2.2 A	40 Hz to 1 kHz	0.033 %			
		2.2 A	to	20 A	40 Hz to 1 kHz	0.11 %			
		20 A	to	120 A	50 Hz to 1 kHz	0.11 %			
							Calibrator generation with current simulation		
		120 A	to	1000 A	45 Hz to 65 Hz	0.67 %	using a current coil		
							Direct measurement		
		10 μΑ	to	100 μΑ	45 Hz to 5 kHz	0.11 %	using a multimeter		
		100 μΑ	to	100 mA	45 Hz to 5 kHz	0.092 %			
		100 mA	to	1 A	45 Hz to 5 kHz	0.11 %			
							measurement with a multimeter on a current		
		1 A	to	100 A	50 Hz to 1 kHz	0.14 %	shunt		
6	Electrical power/power						Direct generation with a	J 62.03.E14.0	1
	meters (50 Hz, up to 740 V)	0.1 kW	to	37 kW	$(0.011 \text{ to } 11) \text{ A } \cos \phi = 1$	0.058 %	calibrator		
					$\cos \varphi = 0.8 \text{ to } 0.9$	0.093 %			
					$\cos \varphi = 0.1 \text{ to } 0.7$	0.14 %			
					(11 to 50) A $\cos \varphi = 1$	0.075 %			
					$\cos \varphi = 0.8 \text{ to } 0.9$	0.11 %			

ČEZ, a. s.CAB number 2245, Calibration Laboratory – Metrology
JE Temelín, 373 05 Temelín

Ord. number ¹	Calibrated quantity / Subject of calibration	No	minal	range		Parameter(s) of the measurand	Lowest stated expanded measurement	Calibration principle	Calibration procedure	Location
		min unit		max	unit	- u. u(s) 02 u.ueusu. u.u	uncertainty ²	Cumorunon principio	identification ³	
						$\cos \varphi = 0.1 \text{ to } 0.7$	0.16 %			
								Calibrator generation with current simulation		
		37 kW	to	740	kW	$(50 \text{ to } 1000) \text{ A } \cos \varphi = 1$	0.76 %	using a current coil		
						$\cos \varphi = 0.8 \text{ to } 0.9$	0.77 %			
						$\cos \varphi = 0.1 \text{ to } 0.7$	0.78 %			
7	pH / pH meters (only the electrical part of the instrument)	0 pH	to	14	рН		0.001pH	Simulation of pH using voltage	J 62.03.Q01.0	1, 2
8	Conductivity / conductivity meters (only the electrical	•	10		-		•	Simulation of conductivity using	J 62.03.Q02.0	1, 2
	part of the instrument)	0.1 μS	to		μS		0.024 %	resistance		
		1 μS	to		μS		0.012 %			
		10 μS	to	100			0.012 %			
		100 mS	to	500	mS		0.058 %			
9	Measurement and simulation of temperature sensors /	0.0		100	0	OCT	20 0	Direct resistance generation by a calibrator/resistance box	J 62.03.T07	1, 2
	temperature gauges	0 Ω	to	100		OST ⁴	20 mΩ	calibrator/resistance box		
		100Ω 400Ω	to	400 4000			$0.01 \% + 10 \text{ m}\Omega$ $0.015 \% + 20 \text{ m}\Omega$			
	1	400 12	to	4000	12		0.013 % + 20 m22	Direct voltage	-	
		−10 mV	to	60	mV	TC ⁵	0.007 % + 4 μV	generation by a calibrator		
10	Mains impedance / Inspection instruments			25	mΩ		5 mΩ	Direct generation with a calibrator	62.03.E15.0 kap. 7.3.6	1, 2
					mΩ		5 mΩ			
					mΩ		5 mΩ			
					mΩ		7 mΩ			
					mΩ		8 mΩ			
					Ω		$10~\mathrm{m}\Omega$			

ČEZ, a. s.CAB number 2245, Calibration Laboratory – Metrology
JE Temelín, 373 05 Temelín

Ord.	Calibrated quantity / Subject of calibration		Nomin	al range		Parameter(s) of the measurand	Lowest stated expanded measurement	Calibration principle	Calibration procedure	Location
number		min u	ınit	max	unit	. ,	uncertainty ²		identification ³	
				1.8	Ω		18 mΩ			
				5	Ω		$30~\mathrm{m}\Omega$			
				10	Ω		$60~\mathrm{m}\Omega$			
				18	Ω		100 mΩ			
				50	Ω		$300~\mathrm{m}\Omega$			
				100	Ω		500 mΩ			
				180	Ω		1 Ω			
				500	Ω		2.5 Ω			
				1	kΩ		5 Ω			
				1.8	kΩ		10 Ω			
11	Leakage current / Inspection							Direct generation with a	62.03.E15.0	1, 2
	instruments	0.1 m	nA to	1	mA		0.5 %	calibrator	chap. 7.3.7	
		1 m	nA to	30) mA		0.32 %			

Asterisk at the ordinal number identifies the calibrations, which the Laboratory is qualified to carry out outside the permanent laboratory premises.

The expanded measurement uncertainty is in accordance with ILAC-P14 and EA-4/02 M a part of CMC and it is the lowest value of the respective uncertainty. If not stated otherwise, its coverage probability is approx. 95 %. If not stated otherwise, the uncertainty values stated without a unit are relative to the measured value. The uncertainty value stated herein is based on the best conditions achievable by the laboratory; the uncertainty value of a specific calibration may be higher depending on the conditions of such a calibration. For identical extreme values of adjacent ranges, the lower uncertainty value always applies.

If the document identifying the calibration procedure is dated only these specific procedures are used. If the document identifying the calibration procedure is not dated, the latest edition of the specified procedure is used (including any changes).

Accredited entity according to ČSN EN ISO/IEC 17025:2018:

ČEZ, a. s.

CAB number 2245, Calibration Laboratory – Metrology JE Temelín, 373 05 Temelín

CMC for the field of measured quantity: Time and frequency quantities

Ord.	Calibrated quantity / Subject of calibration	N	ominal ra	inge	Parameter(s) of the measurand	Lowest stated expanded	Calibration principle	Calibration procedure	Location
number ¹		min unit		max unit		measurement uncertainty ²	Canoration principle	identification ³	Location
1	Frequency / Electronic counters and generators						Direct generation (measurement) by a generator (counter) controlled from a	J 62.03.E06.0, J 62.03.E07.0	1
		1 Hz	to	100 Hz		$2,5 \cdot 10^{-6} \text{ Hz}$	GPS receiver		
		100 Hz	to	1 kHz		$1,2 \cdot 10^{-6} \text{ Hz}$			
		1 kHz	to	10 kHz		$1,5 \cdot 10^{-6} \text{ Hz}$			
		10 kHz	to	100 kHz		$1,6\cdot10^{-6} \text{ Hz}$			
		100 kHz	to	1 MHz		$3.6 \cdot 10^{-5} \text{ Hz}$			
		1 MHz	to	10 MHz		$3.6 \cdot 10^{-5} \text{ Hz}$			
		10 MHz	to	100 MHz		$1,5 \cdot 10^{-4} \text{ Hz}$			
		100 MHz	to	1 GHz		$3.5 \cdot 10^{-2} \text{ Hz}$			
2	Time / Inspection						Direct generation	62.03.E15.0 chap. 7.3.9	1, 2
	equipment	10 ms	to	50 ms		0.52 %	with a calibrator		
		50 ms	to	100 ms		0.27 %			
		100 ms	to	500 ms		0.07 %			
		500 ms	to	1 s		0.045 %			
		1 s	to	5 s		0.025 %			

Asterisk at the ordinal number identifies the calibrations, which the Laboratory is qualified to carry out outside the permanent laboratory premises.

The expanded measurement uncertainty is in accordance with ILAC-P14 and EA-4/02 M a part of CMC and it is the lowest value of the respective uncertainty. If not stated otherwise, its coverage probability is approx. 95 %. If not stated otherwise, the uncertainty values stated without a unit are relative to the measured value. The uncertainty value stated herein is based on the best conditions achievable by the laboratory; the uncertainty value of a specific calibration may be higher depending on the conditions of such a calibration. For identical extreme values of adjacent ranges, the lower uncertainty value always applies.

If the document identifying the calibration procedure is dated only these specific procedures are used. If the document identifying the calibration procedure is not dated, the latest edition of the specified procedure is used (including any changes).

[&]quot;This document is an appendix to the certificate of accreditation. In case of any discrepancies between the English and Czech versions, the Czech version shall prevail, both for the certificate appendix and the certificate itself."